
Journal of Sound and <ibration (2001) 244(2), 195}209
doi:10.1006/jsvi.2000.3470, available online at http://www.idealibrary.com on
ON THE CONVECTION OF SOUND IN INVERSE
CATENOIDAL NOZZLES

L. M. B. C. CAMPOS AND F. J. P. LAU

Instituto Superior ¹eH cnico, 1049-001 ¸isboa, Portugal. E-mail: lmbcampos.aero@popsrv.ist.utl.pt

(Received 11 January 1999, and in ,nal form 19 September 2000)

A variational method is used to deduce the acoustic wave equation, satis"ed by the
potential, for quasi-one-dimensional propagation, in a duct of varying cross-section,
containing a low Mach number mean #ow; both wave equations, for the acoustic potential
and velocity, are reduced to a &SchroK dinger' form, by using the ray approximation as a factor,
in the exact solution. The latter is obtained, for the acoustic potential and velocity
perturbations, both in horns (no #ow) and low Mach number nozzles, of the inverse catenoidal
family of ducts. The latter consists of (see Figure 1 top) the &&bulged'' divergent}convergent duct
of pro"le sech, and (see Figure 1 bottom) the twin &&ba%es'' of pro"le csch. The acoustic
velocity perturbation, apart from one amplitude and one phase term, is common to the two
cases, and is calculated in a second way, by solving a modi"ed form of Mathieu's equation,
with imaginary and hyperbolic, hence non-periodic, coe$cients. These solutions are used to
plot (see Figures 2}5), the amplitude (top) and phase (bottom) of the wave"elds, versus
distance, for several low Mach numbers, and a wide range of wavenumbers, with the
compactness and the ray approximations as extremes, and intermediate values as well.
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1. INTRODUCTION

One of the simplest shapes of &&bulged'' nozzle, is the &&solitary'' wave hump [1], speci"ed by
a hyperbolic secant, which matches smoothly (see Figure 1 top), divergent and convergent
ducts, of exponential shape at large distance; the other inverse catenoidal duct, of
cross-section speci"ed by a hyperbolic cosecant, corresponds (see Figure 1 bottom) to
&&ba%ed'' nozzles. If the wavelength is larger than the transversal dimensions of the duct,
only the fundamental longitudinal acoustic mode can propagate; it is described, in
a quasi-one-dimensional approximation [2, 3] by the nozzle wave equation [4, 5]. At low
Mach number, it is a convected horn wave equation [6]: i.e., it combines Websters [7] horn
equation [8], with the convected wave equation [9, 10]. The simpler horn wave equation,
has elementary exact solutions for "ve shapes [11], namely, the exponential [12], catenoidal
[13], sinusoidal [14], and by reciprocity [15], their inverses. The power-law [16] and
Gaussian [17] shapes lead to non-elementary solutions in terms of Bessel and Hermite
functions respectively. These results have been extended to low Mach number nozzles, of
exponential [18], power-law [19], catenoidal, sinusoidal and Gaussian shapes [20]. The
case of inverse sinusoidal nozzles was also considered [21], and the present paper addresses
the case of inverse catenoidal nozzles.

2. GENERAL WAVE EQUATIONS

A variational method is used (section 2.1), to deduce wave equations for the acoustic
velocity and potential (section 2.2), and reduce both of them to SchroK dinger forms (section 2.3).
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Figure 1. The inverse catenoidal ducts represent a &&bulged'' (a) or a &&ba%ed'' (b) nozzle.
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2.1. VARIATIONAL APPROACH TO ACOUSTICS OF LOW MACH NUMBER NOZZLES

The wave equation describing quasi-one-dimensional, longitudinal acoustic propagation,
in a duct of varying cross-section, containing a low-Mach number steady mean #ow, can be
deduced, without eliminations, by using a variational method [3, 22, 23]; only the aspects
related to the wave equation are brie#y mentioned here. A one-dimensional #ow always has
a potential (1a),

v"/@,L//Lx, E
v
,1

2
ov2"1

2
o/@2, (1a, b)

which speci"es the kinetic energy (1b), where o is the mean #ow density, and v the acoustic
velocity perturbation (1a). It is related to the acoustic pressure perturbation p, by the
inviscid linearized momentum equation

lR ,Lv/Lt, lR #(;v)@#p@/o"0, (2a, b)
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where ;(x) denotes the mean #ow velocity; note that the e!ect of wall boundary layers is
omitted by the assumption of inviscid quasi-one-dimensional #ow. Substituting equation
(1a) in equation (2b), leads to the linearized, unsteady Bernoulli equation (3a),

p"!o (/Q #;/@), E
p
,p2/2oc2"(o/2c2) (/Q #;/@)2, (3a, b)

which relates the acoustic pressure p to the potential /, and thus speci"es the compression
energy (3b), where c denotes the sound speed; the compression energy was calculated upon
assuming that sound propagation is an adiabatic process: i.e., neglecting dissipation, not
only due to viscosity but also to thermal conduction. The acoustic Lagrangian, per unit
volume, is the di!erence of the kinetic and compression energies:

L (x, /Q , /@),E
v
!Eo"1

2
oM/@2!(/Q #;/@)2/c2N. (4)

The Lagrangian per unit length of duct L*"LS is, in equation (5b), the product of the
Lagrangian per unit volume (4) by the cross-section of the duct S (x), and the integral over
space}time speci"es, in equation (5a), the action,

A[/(x, t)],Pdx P dt L*(x, /Q , /@), L*,SL, (5a, b)

which is a functional of the potential. The condition of stationary action. In equation (6a)

dA"0, L(LL*/L/Q )/Lt#L(LL*/L/@)/Lx"0, (6a,b)

leads to the Euler}Lagrange equation (6b), which speci"es the wave equation. Noether's
theorem would have led to the energy equation [23].

2.2. LOW MACH NUMBER NOZZLE OR CONVECTED HORN WAVE EQUATION

In the low Mach number approximation, the acoustic Lagrangian (4) simpli"es to

M2,;2/c2@1, L*"1
2
oS[/@2!(/Q /c)2!2;/Q /@/c2], (7)

and substitution into equation (6b) leads to the wave equation for the potential,

/G#2;/Q @!(c2/S) (S/@)@"0, (8)

where it was taken into account that, at low Mach number (i) the mean #ow mass density
o and sound speed c are constant, and (ii) the volume #ux is conserved as S;"const. An
alternative, and perhaps more direct way to obtain the wave equation (8), is to substitute
equations (1a) and (3a) into the linearized continuity equation for isentropic #ow:

c~2(Lp/Lt#;Lp/Lx)#(o/S)L(Sl)/Lx"0. (9)

The variational approach has the advantage that it supplies not only the wave equation but
also the energy equation [23].

The wave equation for the potential (8) coincides, at low Mach number, to 0(M) with the
convected horn equation

M(L/Lt#;L/Lx)2!(c2/S)L/LxSL/LxN/ (x, t)"0, (10)
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which combines the material derivative, as in the convected wave equation [9, 10], with the
duct operator, as in the horn wave equation [8, 7]. Di!erentiating equation (8) with respect
to x leads to the wave equation for the acoustic velocity (1a), viz.,

vK#2;vR @#2;@vR!c2MS~1(Sv)@N@"0, (11)

which di!ers from that for the potential (8) in that (i) it has an extra term 2;@v, non-zero for
non-uniform mean #ow ;@O0, which is always the case for ;@"!;S@/S in a nozzle of
varying cross-section, and (ii) the duct operators in equations (11) and (8) are di!erent,

L/LxS~1L/LxS!S~1L/LxSL/Lx"(S@/S)@, (12)

except for the expontential duct S@/S"const. The wave equation for the acoustic velocity
(11) corresponds to

M(L/Lt#L/Lx;)2!c2L/LxS~1L/LxSNv(x, t)"0, (13)

where, besides changing the duct operator, the material derivative is also modi"ed.

2.3. REDUCED WAVE EQUATION FOR ACOUSTIC POTENTIAL AND VELOCITY

Since the mean #ow is steady, the frequency is conserved, and it is convenient to use
a Fourier representation,

/, v (x, t)"P
`=

~=

e~*utU,<(x; u) du, (14a, b)

where U is the potential, and < the velocity perturbation spectrum, for a wave of frequency
u, at position x. They satisfy respectively equations (8) and (11), namely,

UA#(1/¸#2ikM)U@#k2U"0, (15a)

<A#(1/¸#2ikM)<@#[k2#(1/¸)@#2ikM @]<"0, (15b)

where k is the wavenumber and M the Mach number,

k,u/c, M(x),; (x)/c, (16a, b)

and ¸ plus (minus) the length scale for changes in cross-section (mean #ow velocity or Mach
number):

¸,S/S@"!;/;@"!M/M@. (17)

The &&original'' wave equations (15a, b), may be reduced to &&SchroK dinger's'' form, without
the term involving the "rst derivative, via the standard [24, 25] change of dependent
variable,

U, < (x; u)"expG!
1

2 P
x
[1/¸(m)#2ikM(m)] dmHW,=

"[S(x)]~1@2 expG!ik P
x
M (m) dmHW,=(x; u), (18a, b)



SOUND CONVECTION IN CATENOIDAL NOZZLES 199
which leads to

WA#[k2!(1/2¸)@!1/4¸2]W"0, (19a)

=A#[k2#(1/2¸)@!1/4¸2!2ikM/¸]="0, (19b)

The reduced wave equation for the potential (19a), is simpler than that for the velocity (19b),
in that it omits dependence on the mean #ow, and thus takes the same form for nozzles as
for horns. In the ray approximation, when the wavelength is much shorter than the length
scale k2¸2A1, upon bearing in mind equation (17), that 1/¸@&1/¸2@k2, the "rst square
bracket in equation (19a) reduces to k2 in equation (21a),

k2¸2A1, WA#k2W"0, (21a)

k2¸2&1/M2A1, =A#k2="0 (21b)

and since the low Mach number approximation assumes 1/M2A1, it is reasonable to scale
k¸&1/M, so that the square brackets in equation (19b) also reduce to k2 in equation (21b).
The solutions e$*kx of equations (21a, b) show that in the case (14a, b; 18a, b) of the ray
approximation,

/, v(x, t)&e~*u(t$x@c)[S (x)]~1@2 expG!ik P
x
M (m) dmH , (22a, b)

there are plane waves propagating in the positive or negative x direction, with amplitude
proportional to the inverse square root of the cross-section (to converse the energy #ux
ocDv D2S), and a phase shift equal to the integrated Doppler e!ect.

3. THE INVERSE CATENOIDAL NOZZLES

The solution of the wave equation, for arbitrary low frequencies (section 3.1), in the
inverse catenoidal ducts (section 3.2), shows some interesting relations between (section 3.3)
horns and nozzles.

3.1. ACOUSTIC FIELDS IN THE RAY APPROXIMATION AND FOR LOW FREQUENCY

The ray approximation (22a, b) applies to high frequencies u2Ac2/¸2, as long as the
wavelength j'd remains larger than the transverse dimension d of the duct, namely
u"kc"2nc/j(2nc/d. Bearing in mind that the transverse dimensions of the duct scale

on the cross-sectional areas as d&JS (x), and recalling the length scale (17) for variations
in cross-section, indicates that the ray approximation (22a, b) is restricted to the range of
frequencies

cS@ (x)/S(x)(u(2nc/JS(x), (23)

which depends on nozzle shape. The exact solution of the quasi-one-dimensional wave
equations (19a, b) would not be restricted by the lower bound in equation (23): i.e., would
apply to arbitrary low frequencies. In the case of low-frequency sound u)c/¸ or k¸)1,
the exact solution of the reduced wave equations (19a, b) depends on the particular shape of
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the duct. Examples are the inverse catenoidal nozzles

S
$

(x)"S
0

sech2, csch2 (x/2l), (24a, b)

where the parameter l is a length scale for the shape of nozzle, which may be interpreted as
follows: (i) both nozzles match a divergent duct for x(0 to a convergent duct for x'0,
both with exponential form or constant length scale, at large distance compared to the
length scale l:

Dx DAl, S
$

(x)"S
0

exp(!DxD/l); (25)

(ii) in the former case (24a), the matching (see Figure 1 top) is smooth, through a &&bulge''
where the cross-section is maximum and equal to S

0
,

x2@l2, S
`
(x)"S

0
(1!x2/4l2); (26a)

(iii) in the latter case (24b), the cross-section diverges at the origin,

x2@l2, S
~
(x)"4S

0
l2/x2 (26b)

and there are two &&ba%ed'' nozzles (see Figure 1 bottom). The mean #ow remains of low
Mach number,

M
$

(x)"M
0

cosh2, sinh2(x/2l) (27a, b)

provided that M2
0
eDx D@l@1, which excludes far, narrow sections of the nozzle. The length

scale for variations in cross-section (17),

¸
$

(x)"!l coth, tanh(x/2l), (28a, b)

coincides with the length scale for nozzle shape D¸ D&l in modulus at large distance DxDAl,
and increases to ¸

#
(0)"R (decreases to ¸

!
(0)"0), at the origin, for &&bulged'' (&ba%ed')

nozzles. The ray solution (22a, b) for the inverse catenoidal nozzles (24a, b) is

/, v (x, t)"e~*u(t$x@c) cosh, sinh(x/2l) expM!i (klM
0
/2)[sinh(x/l)$x/l]N, (29a, b)

and is restricted to the frequency range speci"ed by equations (23, 24a, b):

(c/l) tanh, coth(x/2l)(u((2nc/Js
0
) cosh, sinh(x/2l). (30a, b)

Only the upper bound in equation (30b) restricts one to the exact solution of the wave
equations, which is considered next.

3.2. FILTERING FUNCTION AND CUT-OFF FREQUENCY FOR CATENOIDAL DUCTS

In the case of inverse catenoidal nozzles (24a, b; 27a, b; 28a, b), the wave equation for the
potential (15a)"(31a) is simpler than for the velocity (15b)"(31b), namely,

UA
$
#x!2 tanh, coth(z)#2iKM

0
cosh2, sinh2(z)yU@

$
#K2U

$
"0, (31a)

<A
$
#x!2 tanh, coth(z)#2iKM

0
cosh2, sinh2(z)y<@

$

#xK2#2iKM
0
sinh(2z)#2 sech2,!csch2(z)y<

$
"0, (31b)
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where the prime denotes the derivative with respect to the dimensionless co-ordinate (32a).

z,x/2l, K,2kl"kx/z"2ul/c,X, (32a, b)

and a dimensionless frequency X or reference wavenumber K was introduced (32b)
satisfying Xz"kx. The reduced wave equations (19a, b) are

WA
$
#xX2#1!coth2, tanh2(z)yW

$
"0, (33a)

=A
$
#xX2!1#2iXM

0
sinh(2z)y=

$
"0 (33b)

and are simpler than the unreduced forms (31a, b). The equation for the velocity (33a) takes
the same form for both kinds of ducts (horns and nozzles). The simplest method of solution
is to start from the wave equation for the velocity (33b), in the absence of #ow, when it
simpli"es to

M
0
"0, d2 f /dx2#(u2/c2!1/4l2) f"0, (34)

which speci"es a "ltering function

f (x; u)"G
Aeax@2l

#Be~ax@2l if u(u,

Ax#B if u"u
*
,c/2l,

Ae*bx#Be~*bx if u'u,

(35a)

(35b)

(35c)

which is linear at the cut-o! frequency (35b), monotonic (35a) below, and propagating (35c)
above:

a,J1!(u/u
*
)2, b"(u/c)J1!(u

*
/u)2. (36a, b)

The constants of integration A, B are determined from boundary or radiation conditions,
e.g., specifying the acoustic velocity, pressure or potential at two positions. In the case of an
in"nite duct, in the positive x direction, a bounded acoustic "eld, below the cut-o!
frequency (35a), requires A"0; wave propagation, above the cut-o! frequency (35c), in the
positive x direction, requires B"0, and in the negative x direction requires A"0.

3.3. ACOUSTIC FIELDS IN THE INVERSE CATENOIDAL HORNS AND NOZZLES

When considering, for example, waves propagating (35c) in the positive x direction, the
acoustic velocity perturbation is given, in reduced form, by

=0
$

(x; u)"f (x; u'u
*
)"w

0
e*bx, (37)

or, in non-reduced form (18b), for inverse catenoidal horns (24a, b) by

<0
$

(x; u)"w
0

s~1@2
0

cosh, sinh(x/2l) e*bx, (38)

implying, for the potential,

U0
$

(x; u)"P
x
<0

$
(m; u) dm

"(w
0
/2Js

0
)M[exp(x/2lbx)]/(1/2l#ibx)$[exp(!x/2l#ibx)]/(!1/2l#ib)N.

(39)
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Thus, the reduced potential for a horn is

W0
$

(x; u)"Js
0
sech, csch(x/2l)U0

$
(x; u),W

$
(x; u) (40)

and it coincides with the reduced potential for a nozzle, since the latter does not depend
on the mean #ow, as follows from equation (33a). Substituting equation (40) in equation
(18a, b) with equations (24a, b), yields the unreduced potential in a nozzle as

U
$

(x; u)"W0
$

(x; u) s~1@2
0

cosh, sinh(x/2l) expG!ikM
0 P

x
cosh2, sinh2 (m/2l) dmH (41)

which simpli"es, by equation (40), to

U
$

(x; u)"U0
$

(x; u) exp M!i (X/4)M
0
[sinh(x/l)$x/l]N (42)

and thus the acoustic potential in the inverse catenoidal nozzle (42), is the same as for the
corresponding horn (39), with an extra integrated Doppler shift, due to the non-uniform
mean #ow. The acoustic velocity in the nozzle is given by

<
$

(x; u)"dU
$

/dx"expM!iMX/4)M
0
[sinh(x/l)$x/l]NM<0

$
(x; u)

!i(X/4l )M
0
U0

$
(x; u) [cosh(x/l)$1]N (43)

and thus the acoustic velocity in the inverse catenoidal nozzle di!ers from that in the
corresponding horn, not just by a Doppler shift, as in equation (42), but also by an extra
term, speci"ed by the mean #ow, the reason being that the latter appears in the wave
equations for the unreduced (19b) and reduced (33b) velocity. The latter, i.e. the reduced
velocity, is given, from equations (43; 18b; 24a, b), by

=
$

(x; u)"w
0
e*bx!i (X/4l )M

0
sech, csch(x/2l) U0

$
(x/u) [cosh(x/l)$1], (44)

where the "rst term applies to a horn (37), and the second is the e!ect of the mean #ow. In
this way, the solution (44) of equation (33b) has been obtained, indirectly. Although this
completes the physical solution of the problem, equation (33b) is mathematically interesting
enough to be considered directly, and it may arise in other wave problems.

4. THE MODIFIED MATHIEU EQUATION

Equation (33b) is a modi"ed form of the well-known Mathieu equation, with imaginary
and non-periodic coe$cients. It can be transformed into an equation with polynomial
coe$cients (section 4.1), and its solutions obtained in terms of Frobenius}Fuchs series
(section 4.2), converging in the neighbourhood of one (of two) regular singularities, and they
are used to plot the wave amplitude and phase, as a function of distance, for several values
of low Mach number, and a wide range of values of dimensionless wavenumber (section 4.3).

4.1. TRANSFORMATION OF THE MODIFIED, IMAGINARY, NON-PERIODIC MATHIEU

EQUATION

Since the reduced wave equation for the velocity (33b), is the same for both catenoidal
ducts (24a, b; 27a, b; 28a, b), it appears (18b) in the acoustic velocity for both cases:

<
$

(x; u)"=(x; u) cosh, sinh(x/2l) expM!i (X/4)M
0
[sinh(x/l)$x/l]N, (45)
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The function=(x; u) may be obtained directly, by solving equation (33b), which resembles
a Mathieu equation [26, 27],

>A#[a#b cos(2h)]>"0, (46)

with two important di!erences: (i) one of the two constants is imaginary; (ii) the circular
function is replaced by a hyperbolic function, so that for real z, the coe$cients are not
periodic. Thus Floquet's theory [25] does not apply to equation (33b), since the solutions
are not periodic. A useful result from this comparison, is the analogy with Lindemann's
transformation [26] of Mathieu's equation (46), to polynomial coe$cients, via the change of
independent variable f"cos2 z. In order to do this, the coe$cient of equation (33b) is
transformed from hyperbolic to circular, via an imaginary change of variable:

iz"h#n/4, i sinh(2z)"cos(2h). (47a, b)

Thus the function (48a),

F (h),=(z; u)"= (!ih!in/4; u), (48a)

satis"es a Mathieu equation

FA#x1!X2!2XM
0

cos(2h)yF"0, (48b)

with coe$cients which are circular functions. The change of variable

f"cos2 h, G (f),F(h)"=(!i arg cosJf!in/4; u), (49a, b)

leads to a di!erential equation with polynomial coe$cients,

f(1!f)GA!(f!1/2)G@!xXM
0
f!(1!X2!2XM

0
)/4yG"0, (50)

and three singular points f"0, 1, R.

4.2. CONVERGENT FROBENIUS}FUCHS SERIES IN THE NEIGHBOURHOOD OF REGULAR

POINTS

The points zero and unity f"0, 1 are regular singularities of the di!erential equation
(50), in their neighbourhood converging series expansions exist, respectively in powers of
f, 1!f. The series expansion in the neighbourhood of f"0, proceeds in powers f given by
equations (49a, 47a), namely,

f"cos2 (iz!n/4)"(cosh z#i sinh z)2/2"M1#i sinh(2z)N/2, (51)

and converges for

1'D f D"J1#sinh2(2z)/2, x(l arg sinh(J3),x
0
. (52a, b)

The series expansion in the neighbourhood of f"1, proceeds in powers of

m,1!f"M1!i sinh(2z)N/2, H(m),G (f), (53a, b)

and converges for

1'D m D"J1#sinh2(2z)/2, x(l arg sinhJ3,x
0
. (54a, b)
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Thus, both series expansions can be obtained the same way, and have the same region of
convergence; choosing to perform the change of variable (53a, b) in equation (50) leads to

m (1!m)HA#(m!1/2)H@#xXM
0
m#(X2!1#6XM

0
)/4yH"0. (55)

In the neighborhood of the regular singularity at f"1 or m"0, there is a convergent
Frobenius}Fuchs expansion,

Hp(m)"mp
=
+
n/0

a
n
(p)mn, (56)

with index p, and coe$cients a
n
, to be determined. Substituting equation (56) in equation

(55), and equating to zero the coe$cients of powers of m, leads to the recurrence formula for
the coe$cients:

(n#p#1) (n#p!1/2)a
n`1

(p)"xj!(n#p)2ya
n
(p)!XM

0
a
n~1

(p), (57a)

4j,X2!1#6XM
0
. (57b)

The case n"!1, with a
~1

"a
~2

"0, leads to a
0
p (p!3/2)"0; if a

0
"0, then from

equation (57a) it follows that a
n
"0 for all n, and by equation (56) these results a trivial

solution Hp (m)"0. For a non-trivial solution to exist a
0
O0, implying that p"0, 3/2,

which speci"es two particular integrals,

H
0
(m)"

=
+
n/0

a
n
(0)mn, H

3@2
(m)"

=
+
n/0

a
n
(3/2)mn`3@2, (58a, b)

which are linearly independent; thus the general integral is a linear combination

H (m)"A H
0
(m)#BH

3@2
(m)

(59)

and a
0

may be incorporated into the arbitrary constants of integration, A, B by setting
a
0
(0)"1"a

0
(3/2).

4.3. EFFECT OF MACH AND WAVENUMBER ON WAVE AMPLITUDE AND PHASE

The waveforms are plotted against dimensionless distance (60a),

X,x/l, J
$

(X),Z
0,3@2

(X)/Z
0,3@2

(0), (60a, b)

where

Zp(X),Hp(m)"
=
+
n/0

a
n
(p)M(1!i sinh X)/2Nn`p (61)

Since equation (60b) is complex, there are separate plots of the modulus DJ
$

D , i.e., the ratio
of amplitudes at X and X"0, and the argument arg(J

$
), i.e. phase shift between X"0 and

X, respectively at the top and bottom of Figures 2}5. The Mach number is given three low
values (62a):

M"0)1, 0)2, 0)3, X"0)2, 1, 5 (62a, b)



Figure 2. Ratio of amplitudes (top) and phase di!erence (bottom) of the reduced acoustic velocity, at
dimensionless distance X,x/l, relative to initial value at X"0, for wave function J

`
"nite at X"0, with "xed

wavenumber K"1 and three values of Mach number.
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and the frequency a wider range of values (62b) ranging from ray theory or high frequency
X2A1, to compactness or low frequency X2@1 through the intermediate frequency X&1.
Figures 2 and 3 apply to J

`
and Figures 4 and 5 to J

~
, with the "rst of each pair having

"xed X"1 and varying M (Figures 2 and 4), and the second "xed M"0)3 and varying
X (Figures 3 and 5), i.e., the baseline case is underlined in equations (62a, b). From the
"gures, it is seen that: (Figure 2) the amplitude (top) and phase (bottom) decrease always,
faster for increasing Mach number, in the case of J

`
; (Figure 3) also for J

`
, the amplitude

(top) increases strongly with distance for low frequencies X2@1, and decays slightly for
intermediate and high frequencies X*1, whereas the phase (bottom) shows the same trend
reversed, i.e., increases slightly at low frequencies, and decays strongly at intermediate and
high frequencies; (Figure 4) for J

~
, the amplitude (top) increases, and the phase (bottom)

decreases with distance, with weak dependence on Mach number, for "xed intermediate
frequency X"1; (Figure 5) also for J

~
, the dependence on frequencies is much stronger,



Figure 3. As Figure 2, with "xed Mach number M"0)3, and three values of wavenumber.
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with amplitude (top) increasing less, and phase (bottom) decreasing more, as the frequency
increases. The interpretation of these results is as follows: (i) in the ray approximation
(22a, b), the sound amplitude is larger where the cross-section is smaller, and here also the
mean #ow velocity is larger, and hence larger phase shifts occur; (ii) the amplitude and
phase, in the ray approximation, are distinct for the two inverse catenoidal ducts (45), but
the correction for non-ray e!ects (33b, 44) is the same; (iii) this correction has been plotted in
the Figures 2}5, showing where the ray theory overestimates DJ

$
D(1 or underestimates

DJ
$

D'1 the amplitude, and where the phase shift is more arg(J
$

)'0 or less arg(J
$

)(0
than the prediction of ray theory.

5. DISCUSSION

The present theory assumes nearly #at wavefronts, and thus applies away from large
changes of cross-section, i.e. this excludes the ba%es around X"0 for the csch-duct



Figure 4. As Figure 1, for wave function J
~

which vanishes at X"0.
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(Figure 1, bottom), but not the bulge around X"0 for the sech-duct (Figure 1, top). In both
cases the mean #ow Mach number must be low, so that the theory does not apply too far
down into the narrow sections. The ray solution, which applies at high frequencies, and
neglects re#ections from the walls, corresponds to the factor of = in equation (45). It
consists (i) of an amplitude varying like the inverse square root of the cross-section, i.e.,
a &&focussing'' in converging ducts and &&defocussing'' in diverging ducts; (ii) of a phase shift
speci"ed by the integrated Doppler e!ect, i.e., a lead for propagation downstream and a lag
for propagation upstream. The function =, which is plotted in Figures 2}5, as modulus
(top) and argument (bottom), versus axial position, thus representing the amplitude (top)
and phase (bottom) correction, relative to ray theory, when the frequency X is not high. For
the "rst wavefunction=,J

`
and frequency X"1 in Figure 2, the amplitude increase into

the converging duct X'0, is less than predicted by ray theory (top), and the latter also
overestimates the phase shift (bottom), more so for increasing Mach number. For "xed
Mach number M"0)2 in Figure 3, the e!ect on the "rst wave function J

`
, of decreasing

frequency, is an increasing amplitude (top) and decreasing phase (bottom) relative to the



Figure 5. As Figure 2, for J
~

.
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prediction of ray theory; the latter overestimates amplitude at high frequency X'1 and
underestimates at low frequency X(1 (top), whereas for phase (bottom) ray theory
underestimates at low frequency and overestimates at high frequency. For the second
wavefunction =,J

~
(Figures 4 and 5) the situation is simpler: ray theory requires

a correction factor greater than unity for amplitude (top) and a negative phase correction
(bottom), i.e. it underestimates amplitude and overestimates phase; the e!ect is more
pronounced, i.e. a larger correction is needed, as Mach number increases (Figure 4) or
frequency decreases (Figure 5).
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